DISCRETE AND DENSE SUBGROUPS ACTING ON COMPLEX HYPERBOLIC SPACE

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local rigidity of discrete groups acting on complex hyperbolic space

The superrigidity theorem of Margulis, see Zimmer [17], classifies finite dimensional representations of lattices in semi-simple Lie groups of real rank strictly larger than 1. It is a fundamental problem to obtain the classification of finite dimensional representations of lattices in rank I semi-simple Lie groups. That this problem will be considerably harder than the previous one is suggeste...

متن کامل

OPTIMALLY DENSE PACKINGS OF HYPERBOLIC SPACE by

In previous work a probabilistic approach to controlling difficulties of density in hyperbolic space led to a workable notion of optimal density for packings of bodies. In this paper we extend an ergodic theorem of Nevo to provide an appropriate definition of those packings to be considered optimally dense. Examples are given to illustrate various aspects of the density problem, in particular t...

متن کامل

Optimally Dense Packings of Hyperbolic Space

In previous work a probabilistic approach to controlling difficulties of density in hyperbolic space led to a workable notion of optimal density for packings of bodies. In this paper we extend an ergodic theorem of Nevo to provide an appropriate notion of optimally dense packings. Examples are given to illustrate various aspects of the density problem. Subject Classification: 52A40, 52C26, 52C2...

متن کامل

Fundamental Domains of Discrete Groups Acting on Euclidean Space

Fundamenatal domains of wallpaper groups acting on R2 whose closures are homeomorphic to closed disks can be classified in the same way that Grunbaum classifies isohedral plane tilings in [7]. Almost all of these types of fundamental domains appear as Dirichlet domains, and examples are given.

متن کامل

Some Remarks on Subgroups of Hyperbolic Groups

If G is a hyperbolic group, where G = H oφ Z, H is finitely presented, and φ is an automorphism of H, then H satisfies a polynomial isoperimetric inequality. Necessary and sufficient conditions of homological character are given for a finitely presented subgroup H of a hyperbolic group to be hyperbolic (resp. a quasi-convex subgroup). If Y is a connected subcomplex of the finite connected 2comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2008

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972708000622